
Analysis libraries for molecular trajectories: a

cross-language synopsis

Toni Giorgino

October 1, 2018

To appear in:
Biomolecular Simulations: Methods and Protocols

Edited by M. Bonomi and C. Camilloni

Corresponding author’s address/affiliation:
Biophysics Institute, National Research Council of Italy
Department of Biosciences, University of Milan

Via G. Celoria 26, I-20133, Milan, Italy

Running head:

MD analysis libraries: a synopsis

Summary

Analyzing the results of molecular dynamics (MD)-based simulations usually entails

extensive manipulations of file formats encoding both the topology (e.g. the chemical

connectivity) and configurations (the trajectory) of the simulated system. This chapter

reviews a number of software libraries developed to facilitate interactive and batch

analysis of MD results with scripts written in high-level, interpreted languages. It

provides a beginners’ introduction to MD analysis presenting a side-by-side comparison

of major scripting languages used in MD, and show how to perform common analysis

tasks within the VMD, Bio3D, MDTraj, MDAnalysis and HTMD environments.

1 Introduction

The backbone of molecular dynamics (MD) based methods is to integrate the
equations of motion of a system with a given Hamiltonian. The integration is
performed by an MD engine with a finite time-step, sufficiently fine to capture

1

the fastest motion of interest (e.g., bond vibrations). Commonly, one is inter-
ested in long-time behavior and therefore simulations are performed for several
orders of magnitudes longer than the integration time-steps, making integration
the most compute-intensive component of the MD workflow; this in turn makes
it natural to keep a record (“trajectory”) of the states through which the system
goes for later analysis.

The objective of this chapter is to provide an operative introduction to the
libraries most often used in MD analysis in combination with the corresponding
programming languages. In particular, I strive to provide (a) a side-by-side view
of the constructs most important for analysis (including file input and output
operations); and (b) a side-by-side view of the object models used with reference
to a simple but realistic analysis task.

This review is restricted to a few MD analysis libraries usable in interpreted
(also known as scripting) languages, because they are best suited for interactive
and rapid prototyping tasks. The chapter will be focused on five libraries which
are actively developed, open-source, (Table 1), and whose scope was mainly
trajectory analysis rather than modeling (although the line between the two
may be blurred; Note 1 lists additional libraries).

Table 1 around here

2 Background

One important output of MD simulations are so-called trajectory files, i.e. the
record of the coordinates of particles composing a system, taken at regular
intervals (in atomistic simulations particles model individual atoms, while in
coarse-grained models they represent more generic “beads”). While MD runs
occupy computing resources for days or months, the analysis of trajectories is
generally fast enough to enable an “iterative” hypothesis-calculation-assessment
development cycle, e.g. in search of collective variables, collective modes, or any
other of the observables which are most expressive for the system at hand and
which can be computed from the trajectory.

Other chapters of this book presented a wealth of tools to perform specialized
analysis types. Such tools can be distributed either as command-line utilities
(e.g., GROMACS’ utilities [1], Amber project’s CPPTRAJ [2]), or with graph-
ical user interfaces (either stand-alone, or embedded in molecular viewers; see
Note 2). Of particular importance is the PLUMED library: originally devel-
oped for biasing MD simulations along selected collective variables (CV), the
array of CVs has become increasingly rich and expressive [3, 4]. The libraries
can therefore be used to perform analysis on pre-computed trajectories, defining
the observables to be computed and atom sets through PLUMED’s syntax [5]
which, while not as general as a general-purpose programming language, is still
very expressive for structure-oriented computations to be performed on each
trajectory frame.

2

Developing one’s own analysis routine in the form of computer code is, how-
ever, necessary whenever pre-made tools fall short of the task. This is a frequent
occurrence for advanced MD users, especially when involved in method devel-
opment. Traditional scientific computing languages such as Fortran, C and
C++ in their “bare” form do not suit well the analysis of MD trajectories for
two reasons: first, processing trajectories requires parsing a wealth of molecu-
lar formats, which have been developed over time to accommodate the needs
of ever-increasing scales of simulations; these formats do not only encode the
coordinates of atoms, but also a number of important attributes such as masses,
charges and chemical bonding. Second, and related, the analysis of biological
macromolecules does in large part make use of chemical (e.g., how does one
tell protein from ligand from water?) or structural (e.g., how does one distin-
guish secondary structure elements?) characteristics of the underlying system.
Accessing these atomic attributes becomes easier in presence of an appropri-
ate object model specifying (a) which are the entities modeled in software, (b)
how are they related (e.g. by chemical connectivities) and (c) what are their at-
tributes (e.g. atoms have beta factors, bonds have orders) and (d) the methods
that can be called on each. Developing a suitable object model is no easy task,
greatly simplified in high-level, object oriented languages.

3 Programming languages

The scripting languages underlying the libraries examined in this review are
TCL, R, and Python 3. They have in common their being dynamic (i.e. func-
tions can be defined at run-time) and dynamically typed (i.e. there is no need
to pre-declare the types of variables; but see Note 3 for remarkable cases when
this is useful).

It will be out of the scope of this chapter a discussion of the details of each
programming language (easily found outside of the scientific literature); nor
shall it provide a systematic description of the feature of each library, for which
the corresponding reference manuals are the best and most updated resource
(see Note 4).

3.1 TCL

The TCL (originally Tool Command Language) was created in 1988 as an inter-
preted language suitable for embedding in other software. It has an important
role in the analysis of MD simulations mostly because it is the language of choice
for the Visual Molecular Dynamics (VMD) software [6], an open-source package
enabling the manipulation of long MD-derived trajectories (Section 5.1).

The structure of the TCL language is somewhat unusual in the sense that it
is centered around strings (function bodies, lists, and numbers, all being strings
by default) and a Polish notation for function calls – i.e. f(x, y) is written as
[f $x $y]. Square brackets execute the function which they contain, replacing

3

the return value, while curly braces quote strings (including function bodies).
Other features are:

• Variables are prefixed by $ to be replaced by their value. A rule of thumb
is therefore to use $ when reading variables, and not when modifying them.

• Variables of outer scopes are not visible by default; they are exposed by
constructs such as global (globals), upvar (access the upper evaluation
frame) and variable (variables bound to a namespace).

• Lists are space-separated strings (items can be quoted by curly braces
if necessary). Functions such as llength and lindex provide array-like
access (including nested ones). Indices start from 0.

• There are two types of associative hashes, namely arrays, which use round
parentheses and can not be nested; and dictionaries, which can be nested.

• Mathematical expressions can be written in the more customary infix no-
tation if evaluated with expr.

3.2 R

The R programming language derives from the S language, itself rooted in ’70s
efforts at the Bell Labs to provide an interactive environment for statistical
calculations. R is also the name of the interpreter, which is actively developed
and distributed as an open-source project [7].

R is a higher-level language still, and its features enable a programming style
which is not conductive to meaningful parallels with the other two languages
considered. For example, instead of loops, functional “apply” is encouraged
(and sometimes necessary for efficiency reasons); it is therefore excluded from
some of the syntax comparisons. Implicit rules often allow one not to concern
himself with array shapes, which for the most part follow the “natural behavior”,
carrying over annotations such as row and column names. Also, functions are
heavily overloaded by optional arguments, so that e.g. the seq function will
generate all kinds of numeric sequences (given length vs. given spacing and so
on); likewise many variations of text parsing are accommodated by (say) the
read.table function, or equivalent ones provided in external packages.

For the reasons above, R is a natural fit for statistics-heavy computations.
Other arguably attractive features of the R language are: (a) its expressive
functional foundation, and (b) two extensive, yet cohesive and well-curated,
repositories of add-on packages, known as CRAN (general purpose) and Bio-
conductor (focused on bioinformatics, [8]). Of special relevance for MD analysis
is the Bio3D package [9], which will be part of the side-by-side examples in this
chapter.

4

3.3 Python

Python is a relatively new (first released in 1991) interpreted language for gen-
eral purpose programming. Its main features is arguably a balance of readabil-
ity, conciseness and speed; the object-oriented semantics are especially intuitive,
and extension modules are easy to import (recently made even simpler with the
centralized Conda package manager). The main interest of this language for
the MD community is the number of MD-related libraries which are being re-
leased: beyond those listed in Table 1 and Note 1, it may be worth mentioning
PyEMMA (Markov Model training and testing, [10]), OpenMM (MD engine
with GPU acceleration, [11]), MSMBuilder (statistical models for biomolecular
dynamics,[12]), and many others. Notable language features are:

• White space is significant, defining indentation-based control blocks.

• Built-in data types include integer, floating point, and associative arrays
(hashes). Arbitrary classes can be defined with object-oriented constructs.

• Many notable libraries, of which NumPy (linear algebra) and Pandas
(record-based data frames) are especially convenient for trajectory analy-
sis purposes.

• Add-on packages (modules) become visible in the namespace when import-
ed. The pip and conda package managers provide automated installations.

• Packages exist to compile compute-intensive portions into native code al-
most transparently (see Note 3).

4 Useful programming constructs

This section will briefly review how common structured programming constructs
and input-output operations are expressed in the language mentioned above, by
means of side-by-side parallels. The objective of this comparison is didactic and
practical, in order to enable users to easily switch languages.

4.1 Iterations

Listing 1 shows how four common loop idioms can be implemented, namely (a)
the common “indexed for” which increments an integer index i from 0 (included)
to N (excluded); (b) iterating over the contents of a list, assigning the element
to the variable x; (c) iterating two vectors in parallel, which is useful e.g. when
Cartesian coordinates are stored separately; (d) iterating at the same time over
a list contents as in (b), but also keeping an integer index. Of note, R has the
for(x in vec) construct, but it is often replaced by implicit vectorization and
mapping operators such as apply.

5

TCL

for {set i 0} {$i<$N} {incr i}

{ ... }↪→

foreach x $vec

{ ... }↪→

foreach x $xvec y $yvec

{ ... }↪→

set i 0

foreach x $vec { ...; incr i }

R

for (i in 1:N) { ... }

for (x in vec) { ... }

mapply(function(x,y) { ... },

xvec, yvec)

R indexes from 1

for (i in seq_len(vec)) { ... }

Python

for i in range(N):

...

for x in vec:

...

for x,y in zip(xvec, yvec):

...

for i,x in enumerate(vec):

...

Listing 1: Four iteration styles: integer index, list contents, parallel lists, list
contents plus index.

6

4.2 File input and output

Listing 2 shows TCL and Python idioms for accessing files in read and write
modes. In the case of read, line-based iterations are shown. Note that Python
modules are an excellent alternative to parse and create files in common for-
mats; of particular note are comma separated values (via the csv standard
module); Excel files (via openpyxl, xlrd and others) and HDF5 (via h5py).
Furthermore, the numpy package can parse text files into numeric matrices (func-
tion genfromtxt()); and pandas reads and writes data frames (PDB-like data
structures representing tables with multiple attributes of heterogeneous types)
in various formats via its read_X and to_X methods. Explicit file IO is seldom
necessary in R, given the flexibility of its high-level parsing functions (see e.g.
read.table and write.table, the openxlsx package, and so on).

TCL

set f [open $name r]

set data [read $f]

set lines [split $data "\n"]

close $f

set g [open $name w]

puts $g "Hello world"

close $g

Python

with open(name,"r") as f:

data=f.read() # Read whole file

lines=f.readlines()

with open(name,"w") as g:

g.write("Hello world")

Listing 2: File input and output.

4.3 Strings

Listing 3 shows a selection of common string manipulation operators. In ad-
dition to the split and join operators (on chosen delimiters), a several other
operators are provided as subcommands of the string command (TCL), in the
str module (Python), and the stringr package (R).

4.4 Functions

Listing 4 shows how functions are defined in TCL, Python and R. Of note,
TCL provides optional arguments with defaults. Both Python and R provide
named arguments with defaults. Python functions may uncharacteristically
return multiple values at once: x,y = f().

4.5 Arrays and hashes

The nomenclature of data structures differs between languages. For homogene-
ity I shall use the names array (ordered lists of objects indexed by an integer)
and hash (unordered lists indexed by arbitrary objects, also known as associative
array). Listing 5 shows typical semantics in the three languages.

7

TCL

set sl [string length $s]

set l [split $s ,]

set s2 [join $l ,]

string range $s 10 20

set v 123

format "%5.2f" $v

R

sl <- nchar(s)

l <- strsplit(s,",")[[1]]

paste(l,collapse=",")

substr(s,11,21)

v <- 123

sprintf("%5.2f",v)

Python

sl = len(s)

l = s.split(",")

s2 = ",".join(l)

s[10:21]

v = 123

f"{v:5.2f}"

"%5.2f" % v # equivalent

"{:5.2f}".format(v) # equivalent

Listing 3: Basic string operations.

Accessing arrays in Python and R occurs with a square bracket notation,
with the caveat that the latter uses 1-based indices. TCL uses list operators such
as lindex (indexing), lset (assignment), linsert, lsort, etc., all zero-based.

All three languages also support hashes, with slightly different semantics.
In particular, TCL provides two hash-like structures, both shown, namely more
flexible dictionaries, which can also implement arbitrarily nested data struc-
tures, and so-called arrays.

4.6 Algebra

Listing 6 shows basic math and linear algebra constructs. Using the common
infix syntax in TCL requires the expr function. Common linear algebra oper-
ators are part of core R functions; of the numpy module in Python; and (to a
limited degree) of the math::linearalgebra TCL package and VMD’s built-in
functions such as vecscale.

4.7 Exceptions

Finally, Listing 7 shows the common idioms for recovering from errors (catching)
or signaling them to the callers (raising).

8

TCL

proc sum {a b} {

return [expr $a+$b]

}

proc norm {v {n 2}} {

set s 0.0

foreach x $v {

set s [expr $s+$x**$n]

}

return [expr $s**(1.0/$n)]

}

norm {3 4} ;# = 5

norm {3 4} 1 ;# = 7

R

sum_n <- function(x,y) x+y

norm_n <- function(v, n=2) {

s <- sum(v**n)

return(s**(1/n))

}

Avoid built-in sum, norm

norm_n(c(3,4)) # = 5

norm_n(c(3,4), 1) # = 7

norm_n(n=1, v=c(3,4)) # also 7

Python

def sum(x,y):

return x+y

def norm(v, n=2):

s=0

for x in v:

s+=x**n

return s**(1/n)

norm([3,4]) # = 5

norm([3,4], 1) # = 7

norm(n=1, v=[3,4]) # also 7

Listing 4: Defining functions. The norm function takes the Ln norm of the first
argument (a list of floating-point values), with n defaulting to 2.

9

TCL

set v {10 20 30}

set v [list 10 20 30]; # equivalent

lindex $v 1

lset v 1 42; # no £ prefix

llength $v

set m {{1 2} {3 4}}

lindex $m 0 1; # = 2

set a_dict [dict create beta 1 occ .7]

dict get $a_dict beta; # 1

dict keys $a_dict; # beta, occ

array set a_arr {beta 1 occ .7}

puts $a_arr(beta); # 1

array names a_arr; # beta, occ

R

v <- c(10,20,30)

v[2]

v[2] <- 42

length(v)

m <- matrix(c(1,2,3,4),

byrow=T,ncol=2)

m[1,2]

a=list(beta=1, occ=.7)

names(a) # beta, occ

a[['beta']]

Python

v = [10, 20, 30]

v[1]

v[1] = 42

len(v)

m=[[1,2], [3,4]]

m[0][1] # = 2

import numpy as np

mn = np.array(m) # more flexibly

mn[0,1]

a = {'beta': 1 ,

'occ': .7}

list(a.keys()) # beta, occ

a['beta']

Listing 5: Array- and hash-wise manipulation.

10

TCL

Floating point math requires "expr"

set d [expr sqrt($x**2+$y**2)]

Expr is implicit in conditionals

if { $x>0 && $y>0 }

{ puts "First quadrant" }↪→

Part of tcllib

package require math::linearalgebra

set m {{1 2} {2 1}}

math::linearalgebra::matmul $m $m

math::linearalgebra::det $m

math::linearalgebra::eigenvectorsSVD $m

Eig. for symmetric matrices only

package require math::complexnumbers

namespace import math::complexnumbers::*

sqrt [complex -1 0]

exp [complex 0 3.1416]

R

Assignment arrow is common

d <- sqrt(x**2+y**2)

if(x>0 && y>0) {

message("First quadrant")

}

m <- matrix(c(1,2,2,1),

byrow=T,ncol=2)

m %*% m

det(m)

eigen(m)$values

Imaginary is postfix i

sqrt(-1+0i)

exp(pi*1i)

Python

Import math functions

from math import *

d=sqrt(x**2+y**2)

Note the non-C-like Boolean operators

if x>0 and y>0:

print("First quadrant")

Linear algebra by numpy

m=np.array([[1, 2], [2, 1]])

m @ m # Matrix product; also

m.dot(m)↪→

np.linalg.det(m)

np.linalg.eig(m)

Use numpy or cmath for complex maths.

Imaginary unit is postfix j↪→

np.sqrt(-1+0j)

np.exp(pi*1j)

Listing 6: Arithmetic and linear algebra.

11

TCL

To catch

if [catch {dangerous} e] {

puts "Error caught: $e"

}

To raise

error "Singularity encountered"

R

To catch

tryCatch(dangerous(),

error = function(e) {

message("Error caught:",

e)})↪→

To raise

stop("Singularity encountered")

Python

To catch

try:

dangerous()

except Exception as e:

print(f"Error caught: {e}")

To raise

raise Exception("Singularity")

Listing 7: Exception handling.

12

5 MD analysis libraries

This section will present parallel comparisons for the five MD analysis libraries
listed in Table 1. Each of the packages contains extensive reference material
and examples (see Note 5 for pointers). I won’t discuss installation procedures,
found in the available documentation, but only remark that the TCL interpreter
is embedded in the VMD software (accessible under “Extensions/Tk Console”);
that Bio3D is available through R’s install.packages("bio3d") call; and that
Python-based libraries can be easily installed via the Conda package manager
(see Note 6).

5.1 VMD

VMD [6] is one of the most widely used software packages for MD visualization
and analysis (it also include modeling facilities). Its main strength is that it
deals well with large systems (of the order of millions of atoms) and/or very
long trajectories (millions of frames). Of note, VMD has a plug-in system [13,
14, 15, 16], which allows graphical interfaces to be developed with Tcl/Tk, an
unusually programmer-friendly GUI toolkit.

5.2 Bio3D

Bio3D [9] is an R package for comparative analysis of protein structures. It is
notable for its integration with the R statistical environment and object model,
which facilitates interoperability with the large array of statistical methods im-
plemented in CRAN packages, and the fact that it provides methods for analysis
on the basis of sequence alignments (multiple-PDB objects).

5.3 MDAnalysis

MDAnalysis [17, 18] is an object-oriented Python library for the processing of
MD trajectories. Notable features are its “streaming” design enabling larger-
than-memory processing, methods dedicated to lipid bilayers identification, and
an object model for set-oriented manipulation of atom selections.

5.4 MDTraj

MDTraj [19] is a Python library dedicated to the manipulation of MD trajecto-
ries, with an eye to the integration with external packages. Of note, the library
is well integrated with the OpenMM GPU-accelerated simulation engine [11].

5.5 High-Throughput Molecular Dynamics (HTMD)

HTMD [20] is a Python-based environment integrating facilities for MD analysis,
system preparation [21], building [22], ligand parameterization, and simulation

13

(with the included ACEMD engine [23]). Of note, HTMD suits well the anal-
ysis of multiple independent trajectories (“high-throughput”) via Markov-state
model analysis.

6 Examples of trajectory analysis constructs

To provide a concrete example, I demonstrate side-by-side how a simple but re-
alistic analysis task is implemented in the various analysis libraries. It is applied
to a publicly-available trajectory containing 40 ns of constant-pressure simula-
tion of the acid sensing ion channel (ASIC) 1 trimer [24] embedded in a POPC
membrane, retrieved from the PlayMolecule membrane protein repository [22].

The comparison is restricted to the basic features that could be reasonably
compared side-by-side. They constitute the “least common denominator” of MD
processing: each of the libraries has far more advanced capabilities, to whose
documentation readers are referred. Finally, note that there are differences in
the physical units returned.

The code blocks provided in the next subsections build on each other and
are meant to be executed in order. Note 7 provides code to initialize the pdb

and xtc file name variables and download the data files.

6.1 Loading trajectories

The first step of analysis is to load trajectories into memory (Listing 8). This
generally requires supplying both a topology file, containing atom types and
residue information, and a binary trajectory file, containing the coordinates
taken at regular intervals during the simulation. Note that usually the number
of atoms is assumed constant throughout the simulation (this also a limitation
of common MD trajectory formats). Note that MDAnalysis does not hold the
whole trajectory in memory but rather it updates the associated objects while
iterating; see Note 8 for coding implications.

Once a system is loaded, a representation of the topology (or at least the
main fields) is built in-memory and can be queried. Depending on the language,
a number of attributes provide object-oriented access to residues’ and atoms’
properties (Table 2). Some libraries (depending on the simulation software) also
provide access to unit cell dimensions and physical time between frames.

Table 2 around here

6.2 Frame selection

Listing 9 shows the syntax to retrieve the number of atoms (system size), the
length of a trajectory, and the actual values of coordinates. Coordinates are
usually stored as the underlying language’s matrix objects. Later sections will
show how “slice” operators extract of a subset of atoms or frames.

14

VMD

set t [mol new $pdb]

animate delete all

mol addfile $xtc waitfor all

Bio3D

library(bio3d)

tp <- read.pdb(pdb)

tp$xyz <- read.dcd(dcd)

MDAnalysis

import MDAnalysis as mda

t = mda.Universe(pdb, xtc)

MDTraj

import mdtraj as mdt

t = mdt.load(xtc, top=pdb)

HTMD

from htmd.ui import *

t=Molecule(pdb)

t.read(xtc)
[Space for caption]

Listing 8: Loading topologies and trajectories. R code uses a different variable
name not to overwrite the built-in transpose operator t().

VMD

Number of frames

molinfo top get numframes

set t [atomselect top all]

$t num; # Number of atoms

$t frame 0

$t get {x y z}; # Coordinates

pbc get; # Unit cell

Bio3D

nrow(tp$xyz) # 40 frames

nrow(tp$atom) # 28799 atoms

Accessing coordinates in frame 0

reshaped for convenience

xyz <- tp$xyz[1,]

xyz <- matrix(xyz, ncol=3, byrow=T)

Or: array(xyz,c(40,3,28799))

MDAnalysis

Self-explanatory

t.atoms.n_atoms

t.trajectory.n_frames

Atoms by 3

t.atoms.positions

Unit cell

t.atoms.dimensions

MDTraj

Number of frames

len(t)

Frames by Atoms by 3

t.xyz.shape

Coordinates in frame 0

t.xyz[0]

Unit cell

t.unitcell_lengths[0,:]

HTMD

t.numFrames

t.numAtoms

Atoms by 3 by frames

t.coords

Unit cell

t.box[:,0]

[Space for caption]

Listing 9: Accessing system sizes and coordinates.

15

6.3 Atom selection

The ability to select atoms on the base of their characteristics (identifiers,
residues numbers, or chemical properties) is central to analysis. Most libraries
implement atom selection languages (ASL), strings which can be applied to a
trajectory frame and ultimately evaluate to a boolean value per each atom,
indicating whether the selection includes the atom or not (Listing 10). For
system-specific examples, let’s show how to extract the Oη atom of ASIC1’s
Y72 residue, and the four atoms comprising the χ1 dihedral of W288 (involved
in acid-dependent gating [25]).

It is important to note some variations in the ASL syntaxes, summarized
in Table 3. Of note, atom selection objects (returned by the atomselect com-
mand) are central in VMD, as they are used to read and modify most of a
system’s properties; its extensive ASL has keywords that select on primary se-
quence, PDB fields, steric context, geometry, polarity and so on.

VMD

set y72_oeta [atomselect top "resid 72

and name OH and chain 0"]↪→

set w288_chi1 [atomselect top "resid 288

and name N CA CB CG and chain 0"]↪→

Access the "occupancy" property

of a single atom

$y72_oeta get occupancy

Bio3D

pdb <- tp$atom

y72_oeta <- pdb[pdb$resno == 72 &

pdb$elety == "OH" &

pdb$chain == "0" ,]

w288_chi1 <- atom.select(tp,

elety=c("N","CA","CB","CG"),

resno=288, chain="0")

y72_oeta$o

MDAnalysis

y72_oeta = t.select_atoms("resid 72 and

name OH and segid 0")↪→

w288_chi1 = t.select_atoms("resid 288

and name N CA CB CG and segid 0")↪→

y72_oeta.occupancies

y72_oeta[0].occupancy # also

MDTraj

y72_oeta = t.topology.select("residue 72

and name OH and chainid 0")↪→

w288_chi1 = t.topology.select("residue

288 and name N CA CB CG and chainid

0")

↪→

↪→

t.atom_slice(y72_oeta).topology.\

atom(0).element

HTMD

y72_oeta = t.atomselect("resid 72 and

name OH and chain 0")↪→

w288_chi1 = t.atomselect("resid 288 and

name N CA CB CG and chain 0")↪→

t.occupancy[y72_oeta]

[Space for caption]

Listing 10: Selection of Tyr72’s Oη atom and the four atoms defining the
Trp288’s χ1 dihedral in the first protein subunit via atom selection languages.

Table 3 around here

16

6.4 Filtering and writing

It is often useful to filter out atoms not of interest (say, water molecules) either
to speed-up calculations, or to produce input files for further programs (e.g.,
docking software). Listing 11 shows as an example the syntax used for filtering
the trimer’s backbone atoms and writing the first frame to a PDB file.

VMD

set bb [atomselect top backbone]

Write backbone frame 0

animate write pdb bb_frame0.pdb

beg 0 end 0 sel $bb↪→

Bio3D

bb <- atom.select(tp, "backbone")

tp_bb <- trim(tp, bb)

Select frame 1 (i.e. 0) only

bb_ref <- tp_bb

bb_ref$xyz <- trim(bb_ref$xyz, 1)

write.pdb(bb_ref, "bb_frame0.pdb")

MDAnalysis

bb = t.select_atoms("backbone")

with mda.Writer("bb_frame0.pdb") as w:

t.trajectory[0]

w.write(bb)

Also bb.write() for single frames

MDTraj

bb = t.topology.select("backbone")

t_bb = t.atom_slice(bb) # Subset

Select frame 0 (also [0])

bb_ref = t_bb.slice(0)

Write to file

bb_ref.save("bb_frame0.pdb")

HTMD

bb = t.copy()

bb.filter("backbone")

bb.dropFrames(keep=0)

bb.write("bb_frame0.pdb")

[Space for caption]

Listing 11: Trajectory filtering and writing.

6.5 Basic geometry

Once coordinates are extracted from the trajectory object, they can be manip-
ulated with the language’s native operators. All libraries provide operators to
compute derived quantities such as distances, angles, torsions, hydrogen bonds,
surface-accessible areas, contacts, etc. As noted above, the analysis features of
each library are extensive, and even a partial list would be prohibitively long.

Listing 12 shows the programming style followed in each system to compute
two representative quantities, i.e. (a) the center of mass and (b) the W288 χ1

dihedral, either for a single frame or over the whole trajectory. Care must be
taken to check whether operators account for periodic boundary conditions.

6.6 Alignment and RMSD

Minimum-root mean square deviation (RMSD) alignments are a frequent op-
eration in MD analysis, enabling the geometrical comparison between selected

17

VMD

Center of mass

$bb frame 0

measure center $bb weight mass

W288, chi 1, first frame

measure dihed [$w288_chi1 get index]

All frames

measure dihed [$w288_chi1 get index]

first 0 last 40↪→

Bio3D

Center of mass

com(tp_bb)

Torsion, first frame

tmp <- tp$xyz[1, w288_chi1$xyz]

torsion.xyz(c(t(tmp)))

All frames (reshape as 1D vector)

tmp <- tp$xyz[, w288_chi1$xyz]

torsion.xyz(c(t(tmp)))

MDAnalysis

Self-explanatory

bb.center_of_mass()

Current frame

w288_chi1.dihedral.value()

All frames (iterator)

[w288_chi1.dihedral.value()

for f in t.trajectory]

MDTraj

Self-explanatory

mdt.compute_center_of_mass(bb_ref)

First frame (to degrees)

mdt.compute_dihedrals(t[0],

[w288_chi1])*180.0/np.pi

All frames

mdt.compute_dihedrals(t,

[w288_chi1])*180.0/np.pi

HTMD

Center of geometry: add

"weights=bb.masses" if available in

topology

↪→

↪→

np.average(bb.coords, axis=0).T

First frame

htmd.molecule.util.dihedralAngle(

t.coords[w288_chi1,:,0])

All frames

htmd.molecule.util.dihedralAngle(

t.coords[w288_chi1,:,:])

[Space for caption]

Listing 12: Geometry operations.

18

portions of two structures. The typical formulation proceeds in three steps: (a)
it searches for the proper rigid transformation that minimizes the RMSD dis-
tance between a set of alignment atoms of a trajectory and the corresponding
set in a reference configuration (superposition step); (b) it applies the transfor-
mation to the trajectory (alignment); and (c) optionally returns the root-mean
square of the distances between a set of aligned measurement (or displacement)
atoms and the corresponding ones in the reference (RMSD computation proper;
see Note 9).

Listing 13 summarizes how the steps can be performed; the alignment and
RMSD computation steps are coded separately to make them explicit. Once
the alignment is performed, the modified trajectory can be further processed or
saved back as seen in Section 6.4 (or with the AlignTraj method in the case of
MDAnalysis). VMD code uses the rmsdOf convenience function for readability
(see Note 10).

7 Conclusion

A wealth of libraries has been developed to ease structural biology-oriented
manipulation of MD trajectories with general-purpose programming languages.
This chapter tried to provide MD users – and beginning students in particular
– with a “Rosetta stone” showing languages and constructs side-by-side. It is
also hoped that this effort promotes the integration of methods and interchange
of data between MD communities.

8 Notes

1. The number of libraries dealing with aspects of MD analysis is extensive.
Table 4 provides a partial list of packages further to the ones examined
in this chapter. The selection made in this review is therefore to a large
degree arbitrary, and the balance may change as technologies evolve. I
apologize for the necessary omissions.

Table 4 around here

2. Some tension exists between tackling analysis tasks in a fully general pur-
pose environment, versus using simplified “shells” optimized for specific
MD-related analysis operations. The advantage of the former approach
is its generality, as the algorithm may use the same spectrum of opera-
tions allowed to native code; however, general-purpose compiled languages
(usually Fortran, C and C++) are hard to master, arguably error-prone,
and make for verbose source codes. Structural and trajectory manipu-
lation libraries make MD-related operations somewhat simpler and more
robust, but programming challenges remain. Conversely, interactive MD-
specific applications (either graphical or command-line) restrict the anal-
ysis tasks to the domain-specific ones which have been pre-programmed.

19

VMD

Convenience functions from

github.com/tonigi/vmd_extensions

source ~/VMDextensions.tcl

t: trajectory; r: reference;

alg: alignment; meas: measurement

set meas_t [atomselect top protein]

set meas_r [atomselect top protein

frame 0]

set alg_t [atomselect top backbone]

set alg_r [atomselect top backbone

frame 0]

set rmsd_traj [rmsdOf $meas_t $meas_r

$alg_t $alg_r]

Bio3D

meas.r <- trim(tp$xyz,1)

meas.t <- tp$xyz

alg.set <- bb$xyz

fitted <- fit.xyz(fixed = meas.r,

mobile = meas.t,

fixed.inds = alg.set,

mobile.inds = alg.set)

meas.set <- atom.select(tp,

"protein")$xyz

rmsd.traj <- rmsd(a = meas.r,

b = fitted,

a.inds = meas.set,

b.inds = meas.set)

MDAnalysis

from MDAnalysis.analysis.rms import RMSD

R = RMSD(atomgroup=t,

reference=t,

select="backbone", # align set

groupselections=["protein"])

R.run()

Measures found in column 4 and on

rmsd_traj = R.rmsd[:,3]

MDTraj

fitted = t[:] # Copy

Align

alg_set = t.topology.select("backbone")

fitted.superpose(reference=t,

frame=0,

atom_indices=alg_set)

meas_set = t.topology.select("protein")

meas_r = t.atom_slice(meas_set)

meas_t = fitted.atom_slice(meas_set)

d = meas_t.xyz-meas_r.xyz[0]

rmsd_traj = 10 * np.sqrt(np.mean(

np.sum(d**2,axis=2),axis=1))

HTMD

meas_r = t.copy()

meas_r.dropFrames(keep=0)

meas_t = t.copy()

meas_t.align("backbone",meas_r)

meas_set = meas_t.atomselect("protein")

rmsd_traj = htmd.molecule.util.molRMSD(

meas_t,meas_r,meas_set,meas_set)

[Space for caption]

Listing 13: RMSD-based alignments.

20

The dilemma is to a large extent solved by high-level interpreted scripting
languages such as the ones examined in this chapter, which provide access
to a wide variety of libraries, terse syntaxes, and fast prototype-execute
cycles. Unsurprisingly, interpreters for scripting languages are now em-
bedded in most molecular analysis environments.

3. Python variables can indeed be strongly typed when the interpreter is
used in combination with packages such as Cython [26] or Numba [27].
Both packages transparently compile Python code, annotated with static
types, into optimized native code.

4. The detailed understanding of variable visibility and namespace partition-
ing rules is of particular relevance for development projects more complex
than one-off scripts. Although outside of the scope of this chapter, mas-
tering them is highly desirable because of the increase in productivity and
code quality it affords.

5. Some resources providing realistic worked-out examples:
VMD – VMD’s Tutorials, available at www.ks.uiuc.edu/Training/Tutorials.
Bio3D – Executable demos (pdb, md and pca) and tutorials (called vi-
gnettes in the context of R), installed with the package and also available
at thegrantlab.org/bio3d.
MDAnalysis – The tutorial section available at mdanalysis.org.
MDTraj – The examples section available at mdtraj.org in the form of
IPython notebooks.
HTMD – The Introduction to HTMD section of the User Guide, at
htmd.org.

6. Each package’s documentation specifies in which Conda channel it is
found. Many contributed packages, including MDTraj and MDAnaly-
sis, are found in the conda-forge channel, which provides an automated
building and distribution pipeline. The typical command line is conda

install -c <channel> <packagename>[=<version>].

7. Listing 14 provides scripts which download the data files used in this tuto-
rial and set the corresponding file name variables. The files are simulation
trajectories of the acid sensing ion channel 1 trimer (PDB: 2QTS [24]),
embedded in a POPC membrane located by the OPS algorithm [28] and
simulated for 40 ns with the CHARMM36 forcefield [29]. They are avail-
able from the PlayMolecule repository of pre-equilibrated OPM membrane
proteins [22].

8. MDAnalysis’ out of core design enables the analysis of trajectories much
larger than the memory physically available; however, care must be taken
because iterating over frames in a Universe changes the objects derived
from it. This is evident e.g. in Listing 11 (MDAnalysis panel), where
access to trajectory frame – 0 in the example – also updates the bb object
about to be written. (The same occurs in Listing 12 for the w288 chi1

21

http://www.ks.uiuc.edu/Training/Tutorials
http://thegrantlab.org/bio3d/tutorials
https://www.mdanalysis.org/MDAnalysisTutorial
http://mdtraj.org/latest/examples/index.html
https://software.acellera.com/docs/latest/index.html

VMD/TCL

set code 2qts

set url "http://www.playmolecule.org/static/apps/OPM/data/$code/equil_charmm/"

set pdb structure.filtered.pdb

set xtc traj.filtered.xtc

vmd_mol_urlload $url/$pdb $pdb

vmd_mol_urlload $url/$xtc $xtc

R

code <- "2qts"

url <- sprintf("http://www.playmolecule.org/static/apps/OPM/data/%s/equil_charmm/", code)

pdb <- "structure.filtered.pdb"

xtc <- "traj.filtered.xtc"

dcd <- "traj.filtered.dcd"

download.file(file.path(url, pdb), pdb)

download.file(file.path(url, xtc), xtc)

Convert to DCD format for Bio3D

system(sprintf("catdcd -o %s -xtc %s", dcd, xtc))

Python

code = "2qts"

url = f"http://www.playmolecule.org/static/apps/OPM/data/{code}/equil_charmm/"

pdb = "structure.filtered.pdb"

xtc = "traj.filtered.xtc"

import numpy as np

from urllib.request import urlretrieve

urlretrieve(url+pdb, pdb)

urlretrieve(url+xtc, xtc)

Listing 14: Initialization code.

22

object.) This is perhaps less surprising recalling that in general Python
objects are references, not values.

9. The term “RMSD calculation” may be ambiguous; in particular, it may
indicate the result of the calculation either before or after applying the
optimal-rotation operator. This chapter, for the sake of clarity and gener-
ality, presents two-step procedures in which the alignment and (unaligned)
RMSD calculation steps are explicitly separated. In some software pack-
ages, “RMSD” functions perform the alignment implicitly.

10. The rmsdOf function is a shorthand operator part of the VMD Extensions
Functions library, available at tonigi.github.io/vmd extensions.

Acknowledgments

I gratefully acknowledge the constructive comments received from Prof. B.
Grant, Prof. O. Beckstein, M. Linke, and J. Barnoud. I also acknowledge
Acellera Ltd. and the Dipartimento di Medicina e Chirurgia of the Univer-
sità degli Studi dell’Insubria for funding, as well as CINECA awards under the
ISCRA initiative for the availability of high performance computing resources
and support.

References

[1] Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R.,
Shirts, M.R., Smith, J.C., Kasson, P.M., Spoel, D.v.d., Hess, B., Lindahl,
E.: GROMACS 4.5: a high-throughput and highly parallel open source
molecular simulation toolkit. Bioinformatics 29(7), 845–854 (2013). DOI
10.1093/bioinformatics/btt055

[2] Roe, D.R., Cheatham, T.E.: PTRAJ and CPPTRAJ: Software for Pro-
cessing and Analysis of Molecular Dynamics Trajectory Data. Journal
of Chemical Theory and Computation 9(7), 3084–3095 (2013). DOI
10.1021/ct400341p

[3] Tribello, G.A., Bonomi, M., Branduardi, D., Camilloni, C., Bussi, G.:
Plumed 2: New feathers for an old bird. Computer Physics Communi-
cations 185(2), 604–613 (2014). DOI 10.1016/j.cpc.2013.09.018

[4] Giorgino, T.: How to differentiate collective variables in free energy codes:
Computer-algebra code generation and automatic differentiation. Com-
puter Physics Communications 228, 258–263 (2018). DOI 10.1016/j.cpc.
2018.02.017. 2-s2.0-85043302064

[5] Giorgino, T.: PLUMED-GUI: An environment for the interactive develop-
ment of molecular dynamics analysis and biasing scripts. Computer Physics
Communications 185(3), 1109–1114 (2014). DOI 10.1016/j.cpc.2013.11.019

23

http://tonigi.github.io/vmd_extensions/

[6] Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dy-
namics. Journal of Molecular Graphics 14(1), 33–38 (1996). DOI
10.1016/0263-7855(96)00018-5

[7] R Development Core Team: R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria
(2008). ISBN 3-900051-07-0

[8] Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M., Car-
valho, B.S., Bravo, H.C., Davis, S., Gatto, L., Girke, T., Gottardo, R.,
Hahne, F., Hansen, K.D., Irizarry, R.A., Lawrence, M., Love, M.I., Mac-
Donald, J., Obenchain, V., Oleś, A.K., Pagès, H., Reyes, A., Shannon,
P., Smyth, G.K., Tenenbaum, D., Waldron, L., Morgan, M.: Orchestrat-
ing high-throughput genomic analysis with Bioconductor. Nature Methods
12(2), 115–121 (2015). DOI 10.1038/nmeth.3252

[9] Grant, B.J., Rodrigues, A.P.C., ElSawy, K.M., McCammon, J.A., Caves,
L.S.D.: Bio3d: an R package for the comparative analysis of protein
structures. Bioinformatics 22(21), 2695–2696 (2006). DOI 10.1093/
bioinformatics/btl461

[10] Scherer, M.K., Trendelkamp-Schroer, B., Paul, F., Pérez-Hernández, G.,
Hoffmann, M., Plattner, N., Wehmeyer, C., Prinz, J.H., Noé, F.: PyEMMA
2: A Software Package for Estimation, Validation, and Analysis of Markov
Models. Journal of Chemical Theory and Computation 11(11), 5525–5542
(2015). DOI 10.1021/acs.jctc.5b00743

[11] Eastman, P., Swails, J., Chodera, J.D., McGibbon, R.T., Zhao, Y.,
Beauchamp, K.A., Wang, L.P., Simmonett, A.C., Harrigan, M.P., Stern,
C.D., Wiewiora, R.P., Brooks, B.R., Pande, V.S.: OpenMM 7: Rapid de-
velopment of high performance algorithms for molecular dynamics. PLOS
Computational Biology 13(7), e1005,659 (2017). DOI 10.1371/journal.pcbi.
1005659

[12] Harrigan, M.P., Sultan, M.M., Hernández, C.X., Husic, B.E., Eastman,
P., Schwantes, C.R., Beauchamp, K.A., McGibbon, R.T., Pande, V.S.:
MSMBuilder: Statistical Models for Biomolecular Dynamics. Biophysical
Journal 112(1), 10–15 (2017). DOI 10.1016/j.bpj.2016.10.042

[13] Giorgino, T.: Computing 1-D atomic densities in macromolecular simula-
tions: The density profile tool for VMD. Computer Physics Communica-
tions 185(1), 317–322 (2014). DOI 10.1016/j.cpc.2013.08.022

[14] Fernandes, H.S., Ramos, M.J., Cerqueira, N.M.F.S.A.: molUP: A VMD
plugin to handle QM and ONIOM calculations using the gaussian software.
Journal of Computational Chemistry 39(19), 1344–1353 (2018). DOI 10.
1002/jcc.25189

24

[15] Giorgino, T., Laio, A., Rodriguez, A.: METAGUI 3: A graphical user
interface for choosing the collective variables in molecular dynamics sim-
ulations. Computer Physics Communications 217, 204–209 (2017). DOI
10.1016/j.cpc.2017.04.009

[16] Guixà-González, R., Rodriguez-Espigares, I., Ramı́rez-Anguita, J.M.,
Carrió-Gaspar, P., Martinez-Seara, H., Giorgino, T., Selent, J.: MEMB-
PLUGIN: studying membrane complexity in VMD. Bioinformatics 30(10),
1478–1480 (2014). DOI 10.1093/bioinformatics/btu037

[17] Gowers, R.J., Linke, M., Barnoud, J., Reddy, T.J.E., Melo, M.N., Seyler,
S.L., Domański, J., Dotson, D.L., Buchoux, S., Kenney, I.M., Beckstein,
O.: MDAnalysis: A Python Package for the Rapid Analysis of Molecular
Dynamics Simulations. pp. 98–105 (2016)

[18] Michaud-Agrawal, N., Denning, E.J., Woolf, T.B., Beckstein, O.: MD-
Analysis: a toolkit for the analysis of molecular dynamics simulations.
Journal of Computational Chemistry 32(10), 2319–2327 (2011). DOI
10.1002/jcc.21787

[19] McGibbon, R.T., Beauchamp, K.A., Harrigan, M.P., Klein, C., Swails,
J.M., Hernández, C.X., Schwantes, C.R., Wang, L.P., Lane, T.J., Pande,
V.S.: MDTraj: A Modern Open Library for the Analysis of Molecular Dy-
namics Trajectories. Biophysical Journal 109(8), 1528–1532 (2015). DOI
10.1016/j.bpj.2015.08.015

[20] Doerr, S., Harvey, M.J., Noé, F., De Fabritiis, G.: HTMD: High-
Throughput Molecular Dynamics for Molecular Discovery. Journal of
Chemical Theory and Computation 12(4), 1845–1852 (2016). DOI
10.1021/acs.jctc.6b00049

[21] Martinez-Rosell, G., Giorgino, T., De Fabritiis, G.: PlayMolecule Pro-
teinPrepare: A Web Application for Protein Preparation for Molecular
Dynamics Simulations. Journal of Chemical Information and Modeling
(2017). DOI 10.1021/acs.jcim.7b00190

[22] Doerr, S., Giorgino, T., Martinez-Rosell, G., Damas, J.M., De Fabritiis, G.:
High-throughput automated preparation and simulation of membrane pro-
teins with HTMD. Journal of Chemical Theory and Computation (2017).
DOI 10.1021/acs.jctc.7b00480

[23] Harvey, M.J., Giupponi, G., De Fabritiis, G.: ACEMD: Accelerating
Biomolecular Dynamics in the Microsecond Time Scale. Journal of Chem-
ical Theory and Computation 5(6), 1632–1639 (2009). DOI 10.1021/
ct9000685

[24] Jasti, J., Furukawa, H., Gonzales, E.B., Gouaux, E.: Structure of acid-
sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449(7160),
316–323 (2007). DOI 10.1038/nature06163

25

[25] Sherwood, T.W., Frey, E.N., Askwith, C.C.: Structure and activity of the
acid-sensing ion channels. American Journal of Physiology - Cell Physiology
303(7), C699–C710 (2012). DOI 10.1152/ajpcell.00188.2012

[26] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., Smith, K.:
Cython: The best of both worlds. Computing in Science Engineering 13(2),
31 –39 (2011). DOI 10.1109/MCSE.2010.118

[27] Lam, S.K., Pitrou, A., Seibert, S.: Numba: A LLVM-based Python JIT
Compiler. In: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM ’15, pp. 7:1–7:6. ACM, New York, NY, USA
(2015). DOI 10.1145/2833157.2833162

[28] Lomize, M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I., Lomize, A.L.: OPM
database and PPM web server: resources for positioning of proteins in
membranes. Nucleic Acids Research 40(Database issue), D370–376 (2012).
DOI 10.1093/nar/gkr703

[29] Best, R.B., Zhu, X., Shim, J., Lopes, P.E.M., Mittal, J., Feig, M., MacK-
erell, A.D.: Optimization of the Additive CHARMM All-Atom Protein
Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-
Chain χ1 and χ2 Dihedral Angles. Journal of Chemical Theory and Com-
putation 8(9), 3257–3273 (2012). DOI 10.1021/ct300400x

[30] Sanner, M.F.: Python: a programming language for software integration
and development. Journal of Molecular Graphics & Modelling 17(1), 57–61
(1999). WOS:000084162500006

[31] Schrödinger, LLC: The PyMOL molecular graphics system, version 1.8
(2015)

[32] Hildebrandt, A., Dehof, A.K., Rurainski, A., Bertsch, A., Schumann, M.,
Toussaint, N.C., Moll, A., Stöckel, D., Nickels, S., Mueller, S.C., Lenhof,
H.P., Kohlbacher, O.: BALL - biochemical algorithms library 1.3. BMC
Bioinformatics 11, 531 (2010). DOI 10.1186/1471-2105-11-531

[33] Hinsen, K.: The molecular modeling toolkit: A new approach to molecular
simulations. Journal of Computational Chemistry 21(2), 79–85 (2000)

[34] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt,
D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera–a visualization system for
exploratory research and analysis. Journal of Computational Chemistry
25(13), 1605–1612 (2004). DOI 10.1002/jcc.20084

[35] Grünberg, R., Nilges, M., Leckner, J.: Biskit—A software platform for
structural bioinformatics. Bioinformatics 23(6), 769–770 (2007). DOI
10.1093/bioinformatics/btl655

26

[36] Romo, T.D., Grossfield, A.: LOOS: An extensible platform for the struc-
tural analysis of simulations. In: 2009 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, pp. 2332–2335
(2009). DOI 10.1109/IEMBS.2009.5335065

[37] Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke,
A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., Hoon, D., L,
M.J.: Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics 25(11), 1422–1423 (2009). DOI
10.1093/bioinformatics/btp163

[38] Biasini, M., Mariani, V., Haas, J., Scheuber, S., Schenk, A.D., Schwede,
T., Philippsen, A.: OpenStructure: a flexible software framework for com-
putational structural biology. Bioinformatics 26(20), 2626–2628 (2010).
DOI 10.1093/bioinformatics/btq481

[39] Bakan, A., Meireles, L.M., Bahar, I.: ProDy: Protein Dynamics Inferred
from Theory and Experiments. Bioinformatics 27(11), 1575–1577 (2011).
DOI 10.1093/bioinformatics/btr168

[40] Münz, M., Biggin, P.C.: JGromacs: a Java package for analyzing protein
simulations. Journal of Chemical Information and Modeling 52(1), 255–259
(2012). DOI 10.1021/ci200289s

[41] Hirsh, L., Piovesan, D., Giollo, M., Ferrari, C., Tosatto, S.C.E.: The Victor
C++ library for protein representation and advanced manipulation. Bioin-
formatics 31(7), 1138–1140 (2015). DOI 10.1093/bioinformatics/btu773

[42] Yesylevskyy, S.O.: Pteros 2.0: Evolution of the fast parallel molecular
analysis library for C++ and Python. Journal of Computational Chemistry
36(19), 1480–1488 (2015). DOI 10.1002/jcc.23943

27

Tables

Software Version Language Reference Pub. date URL
VMD 1.9.3 TCL [6] 1996 www.ks.uiuc.edu/Research/vmd

Bio3D 2.3 R [9] 2006 thegrantlab.org/bio3d

MDAnalysis 0.17.0 Python [17] 2011 www.mdanalysis.org

MDTraj 1.9.1 Python [19] 2015 www.mdtraj.org

HTMD 1.14 Python [20] 2016 www.htmd.org

Table 1: Libraries presented in this chapter (sorted by first publication date).
Python-based ones were used with Python version 3.6.5, from the Conda distri-
bution of Anaconda, Inc.

28

www.ks.uiuc.edu/Research/vmd
thegrantlab.org/bio3d
www.mdanalysis.org
www.mdtraj.org
www.htmd.org

PDB field VMD, HTMD Bio3D MDAnalysis* MDTraj Description (PDB 3.3 standard)
ATOM type Record name.
serial serial eleno A.serial Atom serial number.
name name elety names A.name Atom name.
altLoc altloc alt altLocs Alternate location indicator.

resName resname resid resnames R.name Residue name.
chainID chain chain R.chain.index Chain identifier.
resSeq resid resno resids R.resSeq Residue sequence number.
iCode insertion insert icodes Code for insertion of residues.

x x x Orthogonal coordinates for X in Angstroms.
y y y Orthogonal coordinates for Y in Angstroms.
z z z Orthogonal coordinates for Z in Angstroms.

occupancy occupancy o occupancies Occupancy.
tempFactor beta b tempfactors Temperature factor.

segID† segname segid segids R.segment id Segment identifier.
element element elesy A.element Element symbol.
charge charge charge Charge on the atom.

Table 2: Approximate correspondence between fields in PDB, VMD atom selec-
tion objects, Bio3D’s atom data frame, properties of MDAnalysis’ AtomGroup
objects and MDTraj object model properties (R: an instance of a Residue ob-
ject; A: an instance of an Atom object). Notes: (*) Equivalent properties are
also present in Residue and Atom instances. (†) No longer part of the PDB 3.3
format version, but used e.g. for defining molecules in system building.

29

VMD-like* MDTraj Description
name name Atom name
index index Atom index (0-based)
mass mass Element atomic mass (Dalton)
resname resname Three-letter residue code
residue resid Residue index (0-based)
resid residue Residue sequence record

rescode One-letter residue code
element type Chemical symbol
type Forcefield atom type

chainid Chain index (0-based)
chain Chain identifier
segid segment id Segment identifier

Table 3: Correspondences between keywords in the atom selection languages.
Computed attributes (e.g. “backbone”) are omitted. Note: (*) VMD, MDAnal-
ysis and HTMD.

30

Name Language Pub. date Reference
MGLTools/PMV Python 1999 [30]
PyMOL Python ca. 2000 [31]
BALL C++ 2000 [32]
MMTK Python 2000 [33]
UCSF Chimera Python 2003 [34]
Biskit Python 2007 [35]
LOOS C++ 2009 [36]
BioPython Python 2009 [37]
OpenStructure C++, Python 2010 [38]
ProDy Python 2011 [39]
JGromacs Java 2012 [40]
Victor C++ 2015 [41]
Pteros C++, Python 2015 [42]

Table 4: A selection of MD-oriented analysis libraries and toolkits.

31

	Introduction
	Background
	Programming languages
	TCL
	R
	Python

	Useful programming constructs
	Iterations
	File input and output
	Strings
	Functions
	Arrays and hashes
	Algebra
	Exceptions

	MD analysis libraries
	VMD
	Bio3D
	MDAnalysis
	MDTraj
	High-Throughput Molecular Dynamics (HTMD)

	Examples of trajectory analysis constructs
	Loading trajectories
	Frame selection
	Atom selection
	Filtering and writing
	Basic geometry
	Alignment and RMSD

	Conclusion
	Notes

